
Unclas
24994

872-21633

G3/21

Repro uce by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Deportment of Commerce
Springfield VA 22151

(NASA-CR-126140) EQUILIBRIUM PROPERTIES OF
THE SKYLAB CMG ROTATION LAW B.D. Elrod, et
al (Bellcomm, Inc.) 31 Mar•. 1972 80 P
CSCL 22B



BELLCOMM, INC.
955 L'ENFANT PlAZA NORTH, S.W. WASHINGTON. D.C. 20024

COVER SHEET FOR TECHNICAL MEMORANDUM

T1TLE- Equilibrium Properties of the Skylab
CMG Rotation Law

FIl:ING CASE NO(S)-620

FILING SUBJECT(S)- Control Moment Gyros,
(ASSIGNED BY AUTHOR( S)- Spacecraft Attitude Control,

Skylab Program

ABSTRACT

TM- 72-1022-2

DATE- March 31, 1972

AUTHOR( S')- B. D. Elrod
G. M. Anderson

The rotation law is intended to produce gimbal rates
(8) which distribute the angular momentum contributions among
the CMGs to avoid gimbal stop encounters. This investigation
was undertaken to develop an understanding of its implications
for gimbal angle management under various angular momentum situ­
ations. Conditions were obtained for the existence of equilibria
(gimbal angles, iE' for ~=O) and corresponding stability proper-

ties. It was shown that ~E is either asymptotically stable or
unstable in a region about i

E
•

Plots of asymptotically stable i E for constant momentum

direction (h) define equilibrium-loci which the CMGs tend to
follow in glmbal angle space as momentum magnitude (H) varies.
Multiple i E loci were shown to exist for both 2 and 3 CMGs with

some "undesirable" loci extending to the gimbal stops. At H=O
the origin i E was observed to be a unique asymptotically stable

equilibrium for 3, but not 2 CMGs. Consequently 3 CMGs have a
natural recovery capability (to iE=Q) as H+Owhereas 2 CMGs do

not and in fact, multiple i E commonly occur near H=O. Normal

caging operations with 2 CMGs can lead to acquiring an undesir­
able i

E
locus and a subsequent gimbal stop encounter.

A simple modification that increases the rotation law's
flexibility was developed based on the concept of a dynamic
origin. With this approach avoidance of undesirable ~E loci
from caging operations was demonstrated for 2 CMGs •.
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The present rotation law implementation includes

limiting of certain variable parameters, ostensibly for control
of transient response. Depending on momentum conditions this
can increase the number of mUltiple ~E and the potential of a

gimbal stop encounter regardless of initial gimbal angles.
This was illustrated by an example for 2 CMGs. An alternate
limiting arrangement was suggested that does not affect equili­
brium properties.
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1.0 Introduction

The Skylab Control Moment Gyro (CMG) control law
is divided into two parts, i.e.

The steering law, and

The rotation law

The role of the steering law is to allocate the desired
change in angular momentum among the participating CMGs and thereby
develop the. desired control torque on the vehicle. The rotation
law is intended to redistribute the angular momentum among the
CMG's in such a way as to minimize gimbal stop encounters. The
rotation law conserves system angular momentum and therefore does
not produce any torque on the vehicle.

Gimbal angle limits were introduced into the CMG
development to qvoid the mechanical and electrical problems
of slip rings and brushes. That decision eased the hardware
development but complicated the software design.

It is apparent that gimbal stop encounters should
be minimized. The system is in danger of loss of control with
a gimbal in contact with a stop. The Skylab design provides
alternative means for recovery from this condition although it
could be expensive, in terms of consumable propellants. The
preferable course is to avoid, or at least to minimize, gimbal
stop encounters. The rotation law is the chosen instrument for
this purpose.

I
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Perhaps the main feature of the rotation law is that

it is an equilibrium process. Secondly, since the usual torque
demands are slowly varying compared to CMG gimbal angle rate
capability, it is likely to find the system in the vicinity of
its equilibrium.

These two attributes raise the possibility of developing
a model for understanding and predicting CMG behavior under a
wide class of conditions. What is required is a knowledge of
the equilibrium process involved, and particularly of the location
of the points of equilibrium. Since the equilibria are independent
of CMG dynamics, they have a permanent value and once determined
can be compiled for future use and reference.

There is a further point. We have found that multiple
equilibria exist. These multiple points exist even for simply
connected regions of acceptable gimbal angles, i.e. regions not
separated by gimbal limits and in which the angular momentum con­
straint is satisfied. In some cases there are preferable points
of equilibrium. A preferred point is one in which the future
motion of the point is well behaved as opposed to an alternate
point that may subsequently encounter a gimbal stop. The
implications for CMG management of these considerations appears
to be·substantial.

This memorandum treats the following topics:

Equilibrium Process

Allowable Gimbal Angle Space

Evaluation of Equilibria and Possible Problem Areas

Possible Rotation Law Modification

Suggested Areas for Further Research

Summary and Conclusion

A word is in order on the scope of the treatment. The
ideas developed and presented here had their beginnings nearly a
year ago at the time Kranton and Chu were running digital simulations

of Kranton's and the Skylab control law. (6) Often the gimbal angles
would exhibit rapid transients without apparent explanation. At
that time the investigators were restricted to changing constants
and rerunning the problem in the search for improved response. No
method was available to guide this search.
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Also, at the same time, D. A. DeGraaf had uncovered
some evidence of multiple equilibria. This naturally raised
the question of how many equilibria, at constant angular
momentum, actually exist.

With the press of other matters we were not able to
move this project as rapidly as we had wished. It was late
September before some of the major theoretical hurdles were
overcome. However, by then we were running out of time. We
no longer had the possibility to exhaust the equilibrium sub­
ject, for example, by computing a wide range of cases and then
publishing the results.

What we have chosen to do, since an encyclopedic
treatment is foreclosed, is to present the theoretical results
and to amplify them with some illustrative examples. This
method will show what we believe to be the power of this
approach and its potential utility for gimbal angle management
of Skylab CMGs. It will remain for others to carry these re­
sults forward for practical use if that is deemed worthy of
pursuing.

2.0 The Equilibrium Process

It was asserted above that the rotation law is an
equilibrium process. Some of the significant attributes, or
properties, of the control system stemming from this observation
have already been suggested. These are developed more fully
later on. Before that, it is necessary to prove the assertion
regarding equilibrium.

Necessary and sufficient conditions are derived here
for equilibrium. Because of the length of the proof, the
necessary conditions are removed to Appendix A. Stability is
treated subsequently, and conditions for either asymptotic stability
or instability of the equilibria are established.

This section also includes the determination of a
performance function of gimbal angles minimized by the rotation
law.

In this treatment we shall not repeat the derivation
of the rotation law. Interested readers are referred to the

PDD(I) or for a good exposition, to Kranton(2).

We retain here much of Kranton's matrix formulation
for the econrnnies of presentation that it offers. The connection
with POD notation is given at critical junctures.
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The gimbal angles are defined as follows:

°1 °1(1) ~l

°2 °3(1) - 45 0

~2 -45 0

(1)
° = °3 = °1(2) - ~3

°4 °3(2) - 45 0

~4 -45 0

°5 °1(3) ~5

°6 °3(3) - 45 0

°6 -45 0

where the vector in the middle is in PDD notation. (See Fig. 1)

The relationships between gimbal angle rates and
the angular rotation rates (001' ~2' ~3) of the CMG angular

momenta are, following Kranton(2) ,*

(2) ° = ~~}= Rlw l
CMG 1-1

(3 ) ~2 = {~:}= R2~2 CMG 2

.
{~:}(4) ~3 = R3~3 CMG 3

where

[ 0 -:](5) Rl

s02 cO
2

= -t~lCe52 "to l s0 2

*Abbreviations s,c, and t are used respectively for the
sin, cos and tan functions. The superscript T on a vector or
matrix denotes the transpose operation.
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-1

[, , ]c0
6

0 5°6
(7) R3 =. t8

S
S6

6
-1 -t8sC6

6

The rotation law is given by

(8) <5 = DA

where*

(9 ) A = -K DTQ~
= (=:)R

ERC (SAll) (:) (Sell)
SA31 SC31

R1h 2 0 R1h 3

( ~)(10) D R2h 1
R

2
h

3 0 (SA12) (SB12)= =
SA32 SB32

0 R3!!2 R
3

h
1 (~) (SB13) (SCl3)

SB33 SC33

and

*(E
RA

, E
RB

, E
RC

) represent the PDD notation.
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(11) Q =

1

.457

o
o

1

.457

1

.457

The matrix on the right in Eq. (10) is in PDD
notation. The symbols hI' h 2 and ~3 are unit vectors coincident

with the CMG angular momentum vectors. The symbol KR is a

constant that can be adjusted to vary the dynamics of the
rotation law.

In the current rotation law design individual elements

of nT in Eq. (9) are limited in magnitude to a constant SL (cur-
l

rently SL=.04). That in effect introduces additional non-linearity
into the control system without any theoretical foundat~on as to
its potential effect on gimbal stop avoidance. We confine our
attention initially to the case with no limiti~g and later compare
some of our results to the case with limiting.

2.1 Conditions for Equilibrium

The equilibrium condition is one that results in

(12)
.
8 ~ 0

The necessary and sufficient condition for equilibrium is

(13) A = a

That Eq. (13) is a sufficient condition for equilibrium is evident
from Eq. (8). A proof that Eq. (13) is necessary as well, is given
in Appendix A. Another formulation of the rotation law dynamics
which leads directly to Eq. (13) as the equilibrium condition is
developed in Section 2.3 for the stability analysis.
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2.2 A Performance Function of Gimbal Angles

Since the rotation law is a conservative process, i.e.
there is no torque interaction with the spacecraft, it is natural
to expect that the associated dynamics should be derivable from
a potential or, as used here, performance function.* Equilibria
of the system would then correspond to extrema of the performance
function.

As our current interest is in the equilibria themselves,
in order to simplify the analysis, we exclude the system dynamics
from consideration and inquire into the existence of a performance
function whose extrema correspond with the system equilibria.**
It was anticipated that the availability of such a function would
be of value in locating the points of equilibrium. That
expectation was realized. This method is perhaps the best
available for systematic study of the equilibria for two CMGs
and is a useful aid for the three CMG case.

Let

(14 ) P = P(ol'o2' •.... o6) = P'-~)

designate the desired function of gimbal angles. The free, or
independent, variables are the rotations

<1>12 about ~12 = ~l + ~2

<1>23 about ~23 = ~2 + h 3

<1>31 about ~31 = ~3 + ~l

*We prefer the performance designation since we are concerned
with a measure of rotation law effectiveness.

**More exactly, we limit the applicability of the performance
function to a small region about an equilibrium. In this region
the system dynamics are related to the performance function and
it is possible therefore to treat stability using this function.
We suspect that it is possible to derive the entire CMG dynamics
using a Lagrangian formulation in which the potential function
would play the role of what is here termed the performance func­
tion. Time has not permitted the exploration of this idea.
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The rotation rate vector, ~12' is related to ~12 by

(IS) W12

(£1+£2)

1£1+£2 r =

From Eqs. (2) and {3} and the fact that R.h.=O* it follows that
1.-1. -

(Ol/ot) Rl £2 •
= RI~12 = ~12H12ao

2
/ot

('%t) R2£1 .
= R2w12 = ~12H12

ao 4/ot

and, therefore,

(16)

(17)

I

I

(Rl~2) 1) R
1

h 2
=

(RI h 2 ) 2
Hl2

('R2~1)1) R2£1
=

(R2£1) 2
Hl2

By definition of the pairwise rotation ~12 we note that

( os/a~l~ =(0)
(18) a..06/a~l~ 0

We use the fact that the system equilibria are governed
by the condition A = 0 to determine a performance function in
accord with our limited objectives. Accordingly, as the defining
relation, we take

*See Eqs. (S}-(7) and Eq. (B-1) of Appendix B.
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ClP
ClP/Cl<P 12 1 -1

(19) = ClP/Cl<P 23 - H A
Clt KR

ClP/Cl<P 31

where

1~1+h21 0 0 H12 0
(20 ) H - 0 1~2+~31 0 =

0
H23

0 0 Ih3+~11 H31

Using Eqs. (9), (10) and (16)-(18) we can write ClP/Cl<P 12 as

(21)

where q = 0.457 for the present Skylab design. Similar treatment
for ClP/Cl<P 23 and ClP/Cl<P 31 leads to

(22 ) Q§.. =

Thus P for the Skylab CMG rotafion law is a quadratic function of
gimbal angles

(23 )

with extrema occurring whenever A = O.
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2.3 Stability Analysis

With the performance function and the condition for
equilibrium established it remains to examine stability of the
equilibria. This will be based on an equivalent formulation of

• • • • T
the rotation law dynamics in terms of ! = (¢12'¢23'¢3l) rather

than the gimbal rates i as in Eq. (8). The relationship between. .
o and! is

.
o = =

(24) =

whe~e the second line results from sUbstituting Eqs. (16)-(18)
and similar terms for 3¢./a¢ok. Comparison of Eqs. (8) and (24)

-1. J
reveals that

(25 )

which is a nonlinear first-order differential equation in ~ =
(~12'~23'~3l)T, since ~ is an implicit function of ! by vi~tue
of Eq. (19). Since H is constant for a fixed angular momentum
requirement, the equilibrium condition, ~ = 0 falls out immediately.

To investigate stability about an equilibrium point t E
we first linearize Eq. (25) and obtain
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(26 )

where

(27)

(28)

and

[ O~T JT
A = H -

o<p <p=<p
- -E

is a matrix of first partial derivatives of A with respect to <P.
The system defined by Eqs. (26)-(28) is assumed to represent the
rotation law dynamics in a region S about an equilibrium ~=O.

If there exists a positive definite function V(~) whose derivative
in a neighborhood R about ~=O (RES) is negative~definite, then ~=O

is asymptotically stable. (3)- Moreover, if the derivative of V(;)-
is positive-definite in R then !=£ is completely unstable. -

Now consider the positive-definite function

(29 )

where

(30 )

From Eq. (19) we have that

(31) -K H~ = A
R 01

The derivative of Eq. (31) with respect to .2. and evaluation at
<P=1E yields
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(32) -KRH P <H = [2- AT]at - <f>=<f>
- -E

where

(33) P<f><f> [aa. ap T]
- 131 <f>=<f>- -E

@

is the symmetric 3 x 3 matrix of second derivatives of P with
respect to 1. Use of Eqs. (28) and (32) in Eq. (30) yields

(34 )

where

(35 ) B - Hp H = - (l/KR) A
<f><f>

.
Thus V is negative-definite if B is a positive definite matrix.
Since H is diagonal with positive elements the definiteness of
B is determined by P<f><f>' At !=Q, P<f><f> is positive-definite (P<f><f»O)
if P is a minimum and neg~tive-definite (P<f><f><O) if P is a maximum.

Hence ~=O is asymptotically stable in R if P<f><f»O, but unstable in

R if P<f><f><O.

Although these results are based on a linear model of
Eq. (25) the global stability question can be easily investigated
for 2 CMGs including the case of mUltiple equilibria. For 2 CMGs
A and <P are scalars so that typical dynamical behavior can be
represented graphically as in Fig. (2) which illustrates four
equilibria. Clearly <PEl and ~E3 are unstable while <P E2 and <f>E4

are asymptotically stable over the ranges <f>El<<f><<f>E3 and

<f>E3<<f><<f>El+360o respectively. Simulation results have confirmed

these properties and indicate that they probably prevail for 3 CMGs
although we were not able to evaluate boundaries separating domains
of attraction between multiple equilibria. For 2 CMGs the domain
of attraction for an asymptotically stable equilibrium extends over
the entire rotation interval between its two adjacent unstable
equilibria. *

*If only two equilibria exist, the domain of attraction for
the asymptotically stable one is the entire rotation interval
(excluding the point of unstable equilibrium).
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3.0 Allowable Gimbal Angle Space

We now address the question of portraying the allowable
range of gimbal angles consistent with momentum magnitude (H) and
direction (h) requirements which the CMGs must satisfy. Three degrees­
of-freedom (OOF) remain to be specified with 3 CMGs operational
and one OOF with 2 CMGs. This can all be illustrated in terms of
gimbal angle maps for constant h with H and the independent
variables corresponding to the available OOF as parameters. These
will also be useful for subsequent discussion of equilibrium
properties.

In the development for 3 CMGs we will not use the
rotation angles (~12'~23'~13) about the gyro pairs as independent

variables •. Instead we define an alternate set of variables based
on Fig. 3, which illustrates the possible orientation of three
unit momentum vectors (h.,h.,h

k
) about their vector sum.*-1. -J -

(36) ~t - Hh = h.+h.+hk = h.+h' k-1. -J - -1.-J
0<H<3

The orientation of h. (selected arbitrarily) can be specified in-1.
terms of

a. = angle between h. and h-1. -
~ = rotation of h. (and h 'k) about h-1. -J -

The orientation of h. and ~k depends on angles h,S,1/!) where
-J

y = angle between h' k and h
-J

S = angle between h' k and both h. and ~k-J -J

1/! = rotation of h. and ~k about h' k-J -J

*Here (i,j,k) are not associated with any particular gyro so
the results may be kept general. Later we use i=l, j=2, k=3 to
represent Skylab CMGs 1,2, and 3.
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The angles Sand y will be shown to be a function of Hand a.
Hence three independent variables (a,~,$) along with Hand h
suffice to define the orientation of h., h.,hk uniquely. For

-1. -J-
2 CMGs the independent variables reduce to one, namely~. The
geometrical reference for ~=O and ~=O will be defined later.

3.1 Evaluation of Constraints Due to H (3 CMGs)

In general ~ and ~ are independent of H but a is not.
If we define H' k as the magnitude of h,+h,., then from Fig. 3 we

J ~ ~

can write

(37) Hjk
2

H2 + 1 - 2 Hca 0<H'k<2=
J -

or
H2 2

+ 1 - H'k
(38 ) ca = ]

2H

A plot of a vs H
jk

with H as a parameter is shown in Fig. 4.

If H<l, a can be anywhere in the range OO<a<180o, regardless
of Hjk. For H>l the maximum value of a corresponds to Hjk=2.

Consequently

(39 ) (3 CMGs) a =max

H<l

H>l

This represents the maximum cone angle about h which a gyro
momentum vector may have for a given H.

Referring to Fig. 3 again we note that

(40) Hjk = sa/sy = 2cS
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Thus,

(41) S
-1

(Hjk/2) 0:'S:'90°= cos

and

(42) sin
-1

(sa/H j k) {O~Y~lBOO H<l
y =

O:.y:. 90 0 H>l

Curves of Sand y vs H
jk

are shown in Fig. 4. Note that y=S

for H=l. Evaluation of Sand y follows from specifying a and
H which determine H

jk
from Eq. (37).

While a specifies the angle between h. and h, it is
-1. -

also of interest to consider the angles between(h.,hk ) and h.
-J -

It is easy to show that if*

(43)

then

(44)

and

(45)

a. = a
1.

ca j = cScy + sSsyc~

Curves of (aj,ak ) vs a are shown in Fig. 6 for various H and ~.

Note that a. = a
k

if ~=900 or 270 0 and the isogonal distribution
J -1

(a.=a.=ak=a) also obtains, if a=cos (H/3). This point (I) is
1. J

labeled in Fig. 5. Note that only one independent variable (~)

remains in the isogonal orientation, since a and ~ have been
specified.

3.2 Evaluation of Constraints Due to H (2 CMGs)

For the two CMG pairs (h.,h.) or
-1. -J

with ~ and set y=a and S=O. For the pair

with ~ and set y=a.=O and regard S as a.
1.

a is constrained by

(~i'~k) we may dispense

(h.,hk ) we may dispense
-J -

See Fig. 3. In all cases

*See Fig. (B-1) associated with Appendix (B-1).
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so that

(47)

- 16 -

ca = H/2

(2 CMGs)

a = 90°max

0<H<2

(H=O)

The rotation ~ is the only independent variable.

3.3 Gimbal Angle Maps

Geometrically the unit momentum vector gl for each gyro

(l=1,2,3) can be located on a cone with axis h and cone half-angle
ul as illustrated in Fig. 6a. The cone base represents the locus

of points defined by the tip of gl for a given ale rt is desired

to map this locus in gimbal angle space for each gyro. This will
provide curves of or vs. 00 for a given h and various al where or

and 00 (r=1,3,5i 0=2,4,6) are the sYmmetric* inner and outer gimbal

angles defined in Eq. (1).

Consider a sphere with an equator defined by the plane
normal to the outer gimbal axis. Now or and 00 represent latitude

and longitude on this sphere. Consider a second sphere with its
equator defined normal to h. From the above discussion the desired

*i.e. relative to gimbal stops.
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gimbal angles ip can be

Setting hl = h (l=1,2,3)

locus (cone base) corresponds to constant latitude circles on
the second sphere. See Fig. 6b. Now let the spheres be
superimposed with the polar axes displaced by an angle P

l
(which can be specified given hand l = 1,2 or 3). The desired
locus is then a curve of constant latitude on the second sphere
mapped on to the first in terms of latitude and longitude (or'oo)'

A planar plot of or vs. 00 for various u l is entirely analogous

to a rectilinear plot of latitude circles from the earth's celestial
sphere in terms of ordinary geographical latitude and longitude.*

A gimbal angle map for each gyro is shown in Fig. 7
Twhere ~=(O,-.866,.5) ,** and u l is incremented in 15° steps over

OO<u<180°. A portion of gimbal angle space is not available due
to-mechanical gimbal stops as indicated by shading in Fig. 7.***
The points corresponding to u l = 0° and u l = 180° are termed the

pole (P) and anti-pole (AP). They designate the gimbal angles
for h parallel or anti-parallel to~. Of course P becomes AP

and vice-versa if h reverses. The pole

evaluated from Eq. (B-2) in Appendix B.
yields

(48) ° =-p

°pl

°p2

°p3

°p4

°p5

°p6

=

-1
- sin (h)z

-1
tan (-h /h ) -45°

Y x
-1

- sin (h)x
-1

tan (-h /h ) -45°
z Y
-1

- sin (h)
y

-1
tan (-h /h ) -45°x z

*rn that case Pl = 23.5°, the angle between the earth's

geographical and celestial polar axes.

**Numerical values of h will always be given in vehicle coor­
dinates (xv,yv,zv)'

***The distortion inherent in a rectilinear plot of latitude
and longitude causes the excluded region within inner gimbal stops
to appear disproportionately large compared to that within outer
gimbal stops. For Skylab,gimbal stops are at or = ±800 and 00 =
±175°.
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where h , hand h z are the components of h along vehiclex y
(geometric) axes (x ,y ,z ). The various loci on the gimbalv v v
angle maps can also be described analytically. It is easy to
show that

(49)

where Pl is .the angle between ~ and a gyro outer gimbal axis.

For the Skylab CMG configuration shown in Fig. I each outer
gimbal axis is parallel to one of the geometric axes so that

h l = 1z

(50) c Pl = h l = 2x

h l = 3
Y

The + signs in Eq. (49) correspond to the segments of the locus
on eIther side of 00 = 0pO~

3.4 Allowable Gimbal Angles Ranges

Gimbal angle maps as in Fig. 7 illustrate typical loci
for each gyro which depend only on h since this establishes the
poles i p . The allowable regions in-gimbal space are imposed by

H, since this determines a for any gyro according to Eqs. (39)max
and (47). For 2 CMGs the allowable range is along a single a l
locus determined by H with ~ the only free parameter. For 3 CMGs
the entire region bounded by the an = a locus is available to

~ max
one gyro. The region available to the other two is generally
within a band determined by a, $ and H. See Fig. 5 •. However, if
a and $ are fixed, all a l are fixed and only ~ remains free. In

other words the distribution of the ~l (l=1,2,3) relative to h

and each other is fixed, but the composite orientation about h
is not-
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Bifurcation of the allowable gimbal angle range may
occur depending on the pole locations and H. This can be noted
in Fig. 7 for CMG 2 when 0 0<0'.2<90 0 and again in Fig. (13) for

CMG 2 where H = 2 and 0'.<75.5°. This effect leads to multiple
equilibria for the rotation law, although it is not a necessary
condition as will be observed later. The extent of bifurcation
for a particular gyro usually diminishes or even disappears as
H becomes small or h approaches its inner gimbal axis (opI+900,

I=1,3,5).

With 8kylab in the solar-inertial mode* the predominant
orientation of h is normal to the orbital plane due to the cyclic
component of gravity-gradient torque. In that case

-snx

cn C'Vx z

cn svx Z

(51)

The corresponding poles 0 are denoted by ~ and e in Fig. 8 for-p
-75°<n <75°. The loci between~ and e represent the instantaneous- x-
pole migrations from ~ to e, if the gravity-gradient bias momentum
component dominates, when the cyclic component passes through zero.
If the bias component is small the transition time is rather short
(e.g. 30 sec for H

b
, <0.1). .
~as

With 8kylab in the ZLV/XIOP mode** the orientation of h

is essentially normal to the orbital plane and h ~ (O,l,O)T. The
corresponding poles are designated in Fig. 9 along with regions
denoting the dominant pole locations during ZLV/XIOP entry and
exit maneuvers.

*1n the 81 mode zv points to the sun and x is rotated about

by an angle v from the orbital plane. (1) Herevv is based onz z
placing the x principal axis in the orbital plane for all n. See

PDD Eq. 15.3.3(1). The sunline inclination to the orbital ~lane
is n where n >0 with the sunline below the orbital plane at noon.x x

**In the ZLV/XIOP mode Zv points toward the earth's center and

x. is in the orbital plane.
v
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4.0 Equilibrium Evaluation and Potential Problem Areas
;

It has been shown that equilibrium occurs for the Skylab
CMG rotatio~ law whenever a, as defined by Eq. (9), is zero. This
condition corresponds to extrema of a quadratic function of gimbal
angles, P{Q) in Eq. (23). It has also been established that the
equilibria ~E are asymptotically stable in some neighborhood about

£E if P(~E) is a minimum and unstable if P(~E) is a maximum.

One of .our objectives was to systematically determine
the number and location of stable equilibria given the angular
momentum parameters, Hand h.* While time has precluded an
encyclopedic treatment, illustrative results of that effort are
given below. This is followed by an assessment of some potential
difficulties which may arise in the current rotation law
implementation.

4.1 Equilibrium Loci in Gimbal Angles Space

Two methods were utilized in locating equilibria, one

based on a Skylab CMG simulation(4) and the other on systematic
scanning of the (a,~,~) parameters to test A = Q in allowable
gimbal angle space. Both simulation and scanning were used
with 3 CMGs since they proved to be complimentary whereas only
parameter scanning (by ~) was needed for 2 CMGs.

4.1.1 Three CMGs

With the simulation approach a slowly varying ramp torque
of fixed direction was applied to the vehicle to vary Hover 0<H<3.
Since the torque variation was slow compared to the rotation law
dynamics, the CMGs tracked the equilibria as a function of H. A
plot of the gimbal angles corresponding to equilibria for various
H (with h fixed) is defined as an equilibrum locus. Figs. (10)
and (ll)-show ~E loci for 3 CMGs with h at various orientations

in the (y ,z ) and (x ,y ) planes!* These are defined by 8 wherev v v v .
8 = (0°,90°,180°,270°) denotes h directed along(+y ,-z ,-y ,+z )- v v v v
for Fig. (10) and along (+y ,-x ,-y ,+x ) for Fig. (11). Inter­v v v v
mediate values of 8 are also shown.

*Use of the term, stable equilibrium, hereafter is only for
b+evity. Strictly speaking, we mean asymptotically stable equilibrium.

**Similar families of ~E loci can be generated for ~ in planes

intermediate to the (y ,z ) and (y ,x ) planes. The patterns arev v v v
somewhat of a composite between Figs. (10) and (11).
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o =0-E -
(where
the 0-p

earlier

All loci contain the origin (where H=O), since

follows from Eq. (9). The outer end point on each locus
H=3) corresponds to the pole (0 ) for that h. Note that

-p -
follow the pattern of the dominant poles ~, e observed
in Fig. (8), which arise in the solar inertial mode.

A simulation approach provides a convenient means for
identifying the ~E loci emanating from the origin for arbitrary

momentum conditions. However, it does not begin to exhaust the
possible range of allowable gimbal angles satisfying £t = Hh.

For this the parameter scanning method was useful and was instru­
mental in determining additional equilibria. Once one of the
multiple equilibria was identified the simulation was initialized
to this condition and H varied (with h fixed) to determine the
extent of this i E locus in gimbal space. Some additional loci

for h in the (y ,z ) plane are shown in Fig. (12) together with- v v
the corresponding loci emanating from the origin previously shown
in Fig. (10).

The ~E loci in Fig. (12) are a result of bifurcation of

the allowable gimbal space due to the location of 0 for CMG 2.-p
The bifurcation is illustrated by the gimbal angle map in Fig. (13)

for H = 2 and h = (O,-.866,.5).T Points A and AI in Figs. (12) and
(13) denote corresponding ~E. Similar bifurcation and resulting

multiple ~E also result when h is located near the anti-nominal

orientation of either CMG 1 or 3.*

Multiple ~E are not only the result of the bifurcation

effect, although this seems to be the dominant cause for 3 CMGs.
An example of multiple i

E
not due to bifurcation is shown in Fig.

(14). For H = 0 the origin 0 = 0 appears to be a unique stable
equilibrium.** Although we could not demonstrate this analytic­
ally, scanning of gimbal space with (a,~,~) did not prove other­
wise.

*The anti-nominal orientation, 0
to the nominal position, i = ~.

T= (0,7T,0,7T,0,7T) , is opposite

**Although the anti-nominal orientation is an equilibrium for
H = 0, it is unstable.
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MUltiple equilibria occurring within interior gimbal

space are probably of little concern. However, the existence
of ~E loci which extend to a gimbal stop is of importance since

a gyro operating on this segment will encounter the stop for
sUfficiently large H. For a purely cyclic momentum variation
3 CMGs tend to operate about the origin with the excursion away
from it dependent on 0 and H per cycle. With both cyclic

-p max
(Hc ) and bias (H

b
) components present, particularly when orthogonally

oriented, rapid changes in ~E can occur as Hc+O, if H
b

is

sUfficiently large. Compare Figs. (10) and (11). This phenomenon
or other momentum transients, as in maneuvers., can provide the
mechanism for acquiring an equilibrium on an undesirable ~E locus.

4.1.2 Tw.o CMGs

To determine stable equilibria for 2 CMGs it is only
necessary to scan over ~ for given momentum conditions (H,h) and
test for p(o) = minimum or conversely, (lA.Ja~ < 0 at It. = '0 (i=1,2,3).

- 1 1

The applicable A. are obtained from Eqs. (9) and (10) as
1

T T 1 2Al = (Rl~2) ~l + (R 2!!.1) ~2 CMGs &

(52) T T CMGs 2 & 3A2 = (R2h 3 ) .£.2 + (R3!!.2) .£.3

T T CMGs 3 & 1A = (R3~1) i 3 + (Rl~3) i l3

where i l =(ol,02)T, i 2=(o3,o4)T and '£'3=(o5,o6)T. Figs. (15)-

(17) show the gimbal angle maps and i E loci corresponding to each

gyro pair for h =~(O -.S66,.5)T. The poles corresponding to +
are denoted by-<t> and G. * For 2 CMGs all equilibria, stable and
unstable, are easily represented on the same plot. Stable i E
loci are denoted by the solid heavy lines and unstable loci by
dashed lines. The latter, which correspond to ~(o) = maximum
(or aA./a~>O at A. = 0), effectively demarcate the zones of

1 1

attraction of stable equilibria on a particular a contour.

*The maps ~re similar to Fig. (7) except that here a contours
(H=constant) extend only over OO<a<90° for 2 CMGs. The notations
+ and - on numerical values of a-in Figs. (15)-(17) designate the
contours applicable to <±> and 0.
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Multiple equilibria are common for 2 CMGs and as many
as 4-5 different segments have been observed on similar plots.
In all cases there is a major locus which connects the poles,
although it never includes the origin unless h has the anti­
nominal orientation of the missing gyro. The-additional loci may
or may not extend to a gimbal stop. Corresponding loci for the
gyro pairs are labeled I, II, III, etc. in Figs. (15)-(17).
Examples of equilibria for other h are shown in Fig. (18) for
CMGs 1 and 2. Certain symmetries-arise so that patterns of loci
for one gyro pair will occur for another with a different h. For

example, c
E

loci for CMGs 2 and 3 with h=(0,-.5,.866)T are in­

verted images of those for CMGs 2 and 1 respectively, in Fig. (15).

It should be recalled that in the current Skylab rota­
tion law implementation the elements of the R.h. (i¥j) in Eq. (52)

1~

are limited in magnitude to a constant, SL (currently SL=.04)1.*T
The ~E loci for CMGs 1 and 2 with limiting for ~ = ~(O,-.866,.5)

are shown in Fig. (19) for comparison with Fig. (15). Here 10
loci appear compared to 5 without SL limiting. It might also be
noted that varying H so as to move to one pole and then back to
the other will always result in a gimbal stop encounter, regard­
less of initial gimbal angles. This is partly a consequence of
no single (i.e. major) locus connecting the two poles.

4.2 Potential Problem Areas

Multiple stable equilibria have been shown to exist for
both 2 and 3 CMGs. The nature of the phenomena is such that some
iE loci extend out to gimbal stops. Operation on one of these

segments can result in a gimbal stop encounter which leads to TACS**
activation if H increases and spacecraft attitude error grows suf­
ficiently. With 3 CMGs the situation is less uncertain since
ultimate recovery to the origin obtains whenever H+O.*** With 2
CMGs i E = 0 generally does not exist and multiple equilibria often

occur about H=O (a=900). Furthermore it is possible to acquire an
equ1librium on an undesirable i E locus by a normal Sky lab CMG oper­
ation, i.e. caging.

*This does not change the condition for equilibrium (A=O)
or stability properties, although P(c) is no longer a quadratic
function of gimbal angles.

**TACS = Thruster Attitude Control System

***This is based on our assertion (from computational evidence)
that i E = Q appears to be a unique equilibrium and from stability'

results, therefore globally asymptotically stable.
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When caging is commanded, the gyros are first reset

to the nominal orientation (0=0) and then TACS is activated such
that the gyros achieve a deslred momentum state ~t = H~. Hence,

caging with 3 CMGs results in acquiring the major i E locus, a

priori, but not necessarily for 2 CMGs. As an example, the equil­

ibria acquired by CMGs 1 and 2 in caging to h = (O,-.866,.S)T
for 0.2<H<1.8 with and without SL limiting are plotted in Fig.
(20). It-is evident that the undesirable loci (II) in Figs. (15)
and (19) are acquired for a considerable range of H in each case
(O.2<H<1.2). This h also arises in the solar-inertial mode for
nx =-+30°. Thus, if CMGs 1 and 2 were caged to this condition

shortly after orbital 6 AM (H<1.2), CMG 2 would encounter its
outer gimbal stop near orbital noon with just the nominal exter­
nal disturbance environment active.* Similar results occur for
CMGs 1 and 2 over a range of n , at least over 30 0 <n <45° and. x - x
for CMGs 2 and 3 over 4S o <n <60°. Other examples of gimbal stopx-
encounters for 2 CMGs could also be cited; some are to be pub-

lished. S

It should be noted that if in caging, the CMGs had
acquired the major locus (I) connecting the poles in Fig. (15)
for all H, then no stop encounter, as outlined above, could occur.
This is the motivation for a simple modification of the rotation
law, considered next, which would lead to acquisition of the major
locus in caging operations or in transferring to any desired
momentum state.

5.0 Possible Rotation Law Modification

It was observed in Section 4 that all major equilibrium­
loci for 3 CMGs include the origin. This provides a natural focal
point, as H decreases, which is consistent with the rotation law's
fundamental purpose: to avoid gimbal stop encounters. Such is
not the case for 2 CMGs where ~E = Q does not exist for arbitrary

h. A question arises as to whether a dynamic origin (iN) based on

*The momentum requirement is such that the gimbal angles must
,proceed toward the e pole and the route followed is along i E loci

II.+IV+V in Figs. (15) and (l9). With venting torque or momentum
biasing present the likelihood for a stop encounter could be en­
hanced or possibly avoided depending on conditions.
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desired momentum conditions (H,h) could be utilized to increase
the likelihood of operation on a major locus which is essentially
always interior* to the useful gimbal angle space. Initial re­
sults have proved encouraging in that it is possible with only
slight modification of the current rotation law implementation
to acquire the major locus for all H during caging operations
with 2 CMGs.

Our approach was to omit SL limiting and simply modify
A in Eqs. (9) and (31) such that

(53) -K H~ = A K DTQ(~ ~)
R at - - R ~ - ~

where iN is some set of gimbal angles to be defined. By arguments

parallel to Section 2.2 it follows that

(54 )

so that

ap =at

(55)

is a quadratic function of gimbal angles relative to an origin
at i = iN. Hence, for 2 CMGs the equilibrium condition Ai=O and

all stability results (aAi/a~<o for 8E asymptotically stable and

aAi/a~>o for 8E unstable) are unaffected.**

*The,exception is for a small segment of a
a pole which lies within a gimbal stop region.
of minor significance since the gyros would be
(H+2) in this orientation.

major locus near
However, this is

nearly saturated

**If SL limiting were present P(8) would not necessarily be
a quadratic function of gimbal angles, although P(8), whatever
it is, would still have an extremum at A=O by virtue of Eq. (53).
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The manner of choosing ~N is, of course, a designers'

option. One approach would be to set ~N equal to the set of

gimbal angles on the major locus corresponding to ~N = Q for a

particular hand H. Given a large memory computer to store
possible ~N-for the 3 pairs of CMGs and all (~,H), this would

be theoretically possible. As a practical matter it would be
more useful if something close but computationally feasible
were utilized.

For the purposes here we have chosen iN from simple

geometric arguments which are discussed in more detail in
Appendix C. Basically the components of iN are those gimbal

angles which each gyro would have with its momentum vector in
a plane normal to the plane formed by h and its outer gimbal
axis. (See Fig. C-l.) This is defined by

(56 )

where

=

-1
-sin (cp .tced

.t=1,2,3

(57) v =

+1

-1 0p(2.t)<O

The parameter a is obtained from H by Eq. (46) and the quantities
0p(2.t) and P.t are specified by ~ in Eqs. (48) and (50).

The resulting equilibrium loci for CMGs 1 and 2 are

shown in Fig. (21) for h = +(0,-.866,.5)T. The major locus is
seen to be a satisfactory approximation to that in Fig. (15).

Gimbal angles acquired in caging to h = (O,-.866,.5)T for
O.2<H<1.8 are shown in Fig. (22) along with the major locus for
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iN = Q and iN ~ Q. If iN is set to zero in the rotation law

after caging, the CMGs shift slightly to the ~N = ~ major locus.

This demonstrates the feasibility of acquiring the desired equil­
ibrium location in gimbal angle space with relatively modest
impact on the current rotation law formulation. The limiting
operation (by SL), presumably introduced for transient behavior
considerations, would be better served by gain-limiting of KR•

As might be expected, the dynamic origin approach with SL limit­
ing did not substantially alter the results from those in Fig.
(20) where ~ = £.

6.0 Suggested Areas for Further Research

It may be useful to future investigators to identify
at this point some areas which appear to us to merit attention.
We have divided these into areas of perhaps more immediate con­
cern and -those of longer range interest.

A. Current Interest

1. Catalog of Equilibrium Loci - ~E loci are dependent only

on .the momentum parameters and the particular CMGs involved.
Availability of a permanent record or a stored program for CRT
display could support simulators or ground monitors in antici­
pating CMG gimbal angle performance from expected momentum
requirements.

2. SL Limiting Effects - The implications for gimbal angle
performance with SL limiting need to be more fully examined.
Our investigations with both 2 and 3 CMGs indicate an increase
in the number of multiple equilibria and for 2 CMGs, the dis­
appearance of a major ~E locus in some cases. This is at least

part of the cost incurred for some control of transient response
with SL limiting. If an adaptive "gain" is warranted, it might
better be obtained by modifying KR as a function of l, e.g.

KR Il l l2.a
(58) KR = A I - DTQ~

KR IA I I>a

This at least avoids any impact on equilibrium properties.
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3. Dynamic Orig~n ConceEt - The dynamic origin (~N) formu­

lation provides more flexibility to the rotation law, particularly
for 2 CMGs. Equilibrium implies minimization of a quadratic
function of gimbal angles relative to ~N which can be selected

to be compatible with actual or desired momentum conditions.
The specification of ~N and its application needs to be studied.

Appendix C offers one approach.

4. Domain of-Attraction for 3 CMG Equilibria - The location
of "ridge lines"separating domains of attraction for multiple
equilibria was not solved for 3 CMGs. One approach which might
be pursued follows from the observation that on a contour of
constant P(8), a point on a ridge line must satisfy the condition.

(59) (ap ) 2
= \ae/>12 + (

ap ) 2 (ap \ 2
ae/>23 + ,3 e/> 31) . = minimum; P = constant

B. Future Interest

1. CMG Mounting Arrangement - Our results are confined to
the case 6f CMGs with orthogonally oriented outer gimbal axes.
Other, perhaps better, equilibrium characteristics might be ob­
tained for 2 and 3 CMG operation with different mounting arrange­
ments in each case. If so, a movable frame for optimizing the
mounting arrangement among the operational CMGs could be an
important consideration for future systems.

2. Gimbal Angle Control Law - In connection with the dynamic
origin concept it may be possible to develop a gimbal angle con­
trol law which simultaneously accomplishes both CMG steering and
gimbal angle management. Knowledge of ~t = H~ required to specify

desired gimbal angles at time increment (n+l) from data at (n) is
obtained from

(60 )

which for sufficiently small ~, is a valid integration of

(6i) t-c

Here ~ is the desired control torque obtained as in Skylab from

a linear combination of attitude and rate error (!e,ie)

(62) t = -( AOe/> + Al~ )-c --e--e,
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7.0 Summary and Conclusions

The Skylab CMG rotation law has been investigated to
develop an understanding of its implications for gimbal angle
management under various angular momentum conditions. The effort

was 'stimulated by the earlier work of Kranton and Chu(6) on CMG
control laws. They observed rapid transients in gimbal angle
trajectories during simulation studies which suggested the possi­
bility of multiple equilibria. Our objective was to ascertain
the conditions for equilibria, determine stability properties
and to examine any potential for gimbal stop encounters. We had
also hoped to develop a compendium of possible equilibria over a
wide range of momentum conditions for both 2 and 3 CMGs. Time
has not permitted us to complete the latter work but we have in­
cluded a number of illustrative examples and some techniques for
evaluation of equilibria which future investigators might wish
to utilize.

The rotation law formulation in terms of gimbal angles
T0-(0

1
••• 0

6
) is

(63)

where

<5 =-' D (~.> l

(64 )

For 3 CMGs D(o) is a 6x3 transformation matrix relating gimbal
axes to vehicle axes, Q is a constant 6x6 weighting matrix and
KR is a fixed scalar constant.* An equivalent formulation in

~erms of the rotations about respective CMG pairs, t = (~12 ~23 ~31)T,
1S ' ,

(65 )
.
i = HA

*For 2 CMGs, D(o) reduces to 4 xl, Q to 4x4 and a to lx4 with
elements consistent with appropriate pairs of CMGs. -Also, A
becomes a scalar.



- 30 - @
where H is a constant (3x3) matrix for fixed momentum magnitude
(H) and direction (~). The correspondence between i and 1 for
a fixed rotation sequence among (~12,~23,~31)' is unique.

The results of this study have established the following
theoretical properties:

A. The necessary and sufficient condition for equili­
brium (8=Q) is: A=O.

B. Equilibria (iE ) correspond to extrema of a quadratic

function of gimbal angles: PC!) = {~)!TQ!.

C. An equilibrium point (!E' or correspondingly i E) is

1. asymptotically stable in a region (R) about
i E if P(iE ) is a minimum and unstable if

P(!E) is a maximum, or equivalently,

2. asymptotically stable in R. if the matrix,

H , is negative definite and

unstable if it is positive definite.

D. For 2 CMGs the domain of attraction about a given
!E is the entire rotation interval between its adja-

cent unstable equilibria.*

E. For 3 CMGs and H=O, iE=Q is a unique asymptotically

stable equilibrium (based on computational evidence).

Two methods were utilized in evaluating equilibria, one

based on a CMG computer simulation(4) and the other on systematic
scanning of allowable 0 space which varies with momentum para­
meters (H,h). The first relies on the asymptotic stability prop­
erty to locate equilibria and the second on testing A orP(o)
according to properties A or B at each step in the scanning-pro­
cess. A plot of the asymptotically stable i E for fixed h define

*For 2 CMGs, ! is a scalar.
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equilibrium-loci that the CMGs tend to follow in i space as H
varies.

MUltiple equilibria were shown to exist for both 2
and 3 CMGs with some "undesirable" loci-extending to the gimbal
stops, thus creating the potential for stop encounters. Gimbal
angle transients can result from the transfer between different
i E loci for fixed ~ or the transfer between widely separated ~E

for rapidly changing h. For 3 CMGs a i E locus always emanates

from the origin (iE = Q) where H=O and terminates at the gimbal

angles (0 ) where H=3 (CMG saturation).* For 2 CMGs the major-p
i E locus (terminating at i p ) cannot include i E = Q at H=O. In

fact multiple equilibria, widely separated in 0 space, commonly
occur near H=O. Hence, the 3 CMG case has a natural recovery
capability (to iE=O), but the 2 CMG case does not. It has been

demonstrated that normal Skylab caging operations for some momen­
tum conditions can lead to acquiring an undesirable locus with
subsequent operation leading to a stop encounter.

A simple modification of the rotation law was developed
which provides more flexibility for gimbal angle management.
This is the dynamic origin concept based on defining A in Eq.
(63) as -

(66)

where 0 is an arbitrary set of gimbal angles. All of the equil-
-N

ibrium properties, A-E, still apply except P(o) in B becomes

P(.£) = ~(i-iN)TQ(§'-iN) and iE=Q in E becomes 0E = iN. A method

was presented for selecting iN which, for 2 CMGs, leads to ac­

quisition of a major locus in caging operations.

In the present rotation law implementation the elements

of DT(o) in Eq. (63) are limited to a constant (SL).** This

.*CMG spin angular momenta are normalized to 1. For 2 CMGs
0<H<2.

**Currently, SL = .04(1).
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effectively voids properties B, CI and· perhaps E, although the
latter was not demonstrated conclusively. SL limiting has other
implications for gimbal angle management since it tends to in­
crease the "number of multiple equilibria, particularly for 2
CMGs. It has also been demonstrated that with limiting and
appropriate momentum conditions, gimbal stop encounters can
always occur regardless of the initial o. Another approach
that provides limiting for control of transient response, yet
avoids the impact on equilibrium properties, was suggested.
(See Section 6.)
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Appendix A

Necessary Condition for Equilibrium

We prove here that

(A-I) A = 0

is the necessary condition for equilibrium.

Suppose that

(A-2)

For equilibrium under this condition it is necessary, from
Equation 4, that

DA = 0

For Equation (A-I) to have solutions, other than
A = 0, it is necessary that the rank of D must be less than 3.
The rank of D is certainly no greater than 3 since D is a 6x3
matrix. If the rank of D is exactly three, the associated minor
can be inverted to yield at once, in (A-2), l = o. "

There are 20,3 x 3, minors in D. The determinants
of these minors must all be zero for the rank of D to be less
than three.

The Rh elements in Dare 2 x I vectors. Designating
the components of these vectors by subscripts I and 2, D may
be written



A-2

(Rl h 2)1 0 (Rl h 3 )1

(Rl h 2 )2 0 (Rl h 3 )2

(A-3) D = (R2h l )1 (R2h 3 )1 0

(R2h l ) 2 (R2h 3 )2 0

0 (R3h 2 )1 (R3h l )1

0 (R3h 2 )2 (R3h l )2

Number the rows of D from 1 through 6. Set the
determinants of the twenty minors obtained from the combinations
of six rows taken three at a time equal to zero. Eleven independent
equations result. They are listed along with the rows of D
used to form the minor.

(A-4)

123
124
125
126

=

341 (R2h l )1 (R2h 3 )1

(A-5) 342
(R2h l )2

=
(R2h 3 )2345

346

156 (R3h 2 )1 (R3h l )1

(A-6) 256
(R3h 2 )2

=
(R3h l )2356

456

(A-7) 135
(Rl h 2 ) 1 (R2h 3 )1 (R 3h l ) 1

-1
(Rl h 3 )1 (R 2h l )1 (R3h 2 )1

=



(A-8)

(A-9)

(A-10)

(A-II)

(A-12)

(A-13 )

(A-14 )

136

145

146

235

236

245

246

A-3

(Rl h 2 )1

(R1h 3 ) 1

(Rl h 2 )1

(R1 h 3 ) 1

(R1h 2 )2

(Rl h 3 )2

(R2h 3 ) 2

(R2h l )2

(R2h 3 )2

(R2h l ) 2

(R2h 3 )l

(R2h l )l

(R2h 3 )2

(R 2h l ) 2

(R3h l )l

(R3h 2 )l

(R3h l )2

(R3h 2 )2

@
= -1

= -1

= -1

= -1

= -1

= -1

= -1

There are conditions under which elements of D, the
Rh terms, may be zero. These are dealt with later. For the present
it is assumed that the terms in Equations '(A-4) through (A-IO)
are non-zero.

z =

x =

(A-IS)

Let
(R1h 2 )1

(Rl h 3 )l

(R2h 3 )1

Y = (R
2

h
l
)l

=

=

=

(Rl h 2 )2

(R1h 3 )2

(R2h 3 )2

(R2h 1 )2

(R3h 1 )2

(R3h 2 )2



A-4

Equations (A-7) through (A-14) are equivalent to
a single equation

(A-16) xyz = -1

Setting the determinants of the 20, 3 x 3 minors of
D to zero has thus resulted in four Equations, (A-4) , (A-S) ,
(A-E) and (A-16).

Let

u = Rl h 3-
(A-17 ) v = R

2
h l

w = R3!:!.2

Then from Equations (A-IS)

(A-18 )

and,therefore

x u 0 u-
(A-19 ) 0 = v y ~ 0

0 w z w

Insert 0 from (A-19 ) into (A-2) to obtain, since ~, v, and
ware non-zero,

x Al + A3 = 0

(A-20) Y A2 + Al = 0

z A3 + A2 = 0



A-5

Equations (A-20) do not of themselves establish
that A = 0 since setting the determinant of this system equal
to zero yields

xyz = -1

or Equation (A~16). Since the determinant is zero, a non­
zero A is possible.

Let

(A-2l) r. = (~:) = °l.§..

where

1.1 = °1 (:~) i 1.2 = 01 (::) ; L3 =
°1 (::)

and

G 04:7]°1 =

From Equations (5), (A-19) , and (A-2l)

A = -K DT1.
r



A-6

T
+ T

x1..1 u 1..2 v- -

(A-22) -K T
+

T= Yr.2 v r.3 wr -
T

+ T
zr.3 w 1..1 u-

or

Al + b -K T= x a a = rr.l u-
(A-23) A2 b + b -K T= Y c = rr.2 v-

A3 + -K :L
T= z c a c = wr 3

Solve (A-20) for x, y,and z and substitute into (A-23). The
result is

A 2 =
1.

(A-24) A2
2 -bA + CA 2= 1

A3
2 -CA + aA 3= 2

Adding these three equations gives

A 2 + A 2 + A 2 - 0
1 2 3-

and since AI' A2 , and A3 are real, it follows that

(A-25) A = 0



A-7
@

We return now to the case where elements of Dare
zero. If a single element, say (Rl h 3)I,is zero then

Equation (A-4) is not satisfied and the associated determinants.
are non-zero. The matrix of the equations of the first three
rows of D can be inverted to yield

A = 0

in accord with (A-25).

A colinear condition of two or three of the angular
momentum vectors produces zeros'in D. Suppose

Then, since

it follows that

(A-26)

and similarly

(A-27)

Substituting (A-26) and (A-27 ) into (4) gives

RI !:!.2 1 0 0

(:)0 = R2!:!.11 R2!:!.3 0 = 0

0 I R3h
2 0

from which it follows that

Al = A
2 = 0



A-a @
Substituting (A-26) and (A-27) into (5) gives

A = 03

If all three angular momentum vectors are colinear,
then all elements of D are zero and

A = 0

follows directly from (5).

The hypothesis ~ ~ 0 has resulted in a contradiction.
There are no finite values of A that produce equilibrium and
A = 0 is therefore the necessary condition for equilibrium.



Appendix B

Relationship of Gimbal Angles to (a,~,$) and h

In Fig. 1 the Skylab CMG configuration is shown with
the gyro momentum vectors hl'~2 and ~3 aligned along vehicle

(geometric) axes (x ,y ,z ). The symmetrical* gimbal angles °
T v v v

(01' •••• ,06) used here are related by Eq. (1) to the physical

gimbal angles with defining directions shown in Fig. 1. Since
the physical angles are related to (~1,h2'~3) by**

(B-1)

"co
l

c0 2
" A

-c 01 sC 2

-sol

"-so
):

~~ = c8 3C5 4
" A

-c °3s 04

"-coSso 6
"-s6

5
A A

cO SC<5 6

° can be written as
-1

°1 -sin (hlz )

-1
<5 2 tan (-hly/hlx )

-1

(B-2) °
°3 -sin (h2x )

= =
-1

°4 tan (-h2z/h2y )

-1
°5 -sin (h3y )

-1
°6 tan (-h3x/h3z )

v v v
It remains now to express h l , ~2 and ~3 in terms of

(a,~,$) and h. First we describe the orientation of h as shown
in Fig. (B-la) by the angles Land l. Thus

*i~e., relative to gimbal angle stops.

**Superscripts on vectors are used to emphasize the coordinate
system in which its components are expressed.

IP_I



B-2

h cLclx

(B-3) h
V

= h = sL
Y

h -cLsl
Z

or

(B-4) -1
O<ILI~90oL = sin (h)

Y

(B-5) l
-1

O~lll2.l80o= tan (-h /h )
Z x

Next consider the right-handed coordinate system (xh,yh,zh) shown

in Fig. (B-la) where x h is along hand zh is in the (Y ,Z ) plane.- v v
The coordinate transformation relative to (x ,y ,Z ) isv v v

(B-6)

where

(B-7) A = [L] [l]
Z Y

Now let hI be displaced from

illustrated in Fig. (B-lb).
(xh,Yv ) plane. Thus,

h by a* and rotated about ~ by ~ as

Note that ~ = 0 is referenced to the

(B-8) hh = BT{n-1

where

(B-9) B = [-a] [-~]
Z x

*See Footnote * p . 13.. ,



B-3

or using Eg. (B-6) we get

@

(B-IO)

As shown in Fig. (B-lb), ~23 = h 2 +~3 is displaced from

~ by y and diametrically opposite to ~l. Now let ~2 and h 3 be

displaced by S from ~23 and rotated about ~23 by ~ as in Fig. (B-lc).

This gives*

(B-ll)

(B-12 ) hh [[ Bl z [<p 1x [Y 1z H Jxr {g } T{CB}= = C .. ~s-3

where.

(B-13) C - [~] x [y] z [-</>] x

Note that ~=O is referenced to the plane formed by ~23 and h.
Using Eg. (B-6) we get

(B-14 ) h
V

= AThh
= ATCTH~}-2 -2

and

(B-1S) hV
= AThh

= ATCT{~~}-3 -3

*While this formulation is written to

given H, ~ and (a,~,~) it also possible to

(~~,~~,~~) with a, few simple manipulations

v v v
evaluate.~1'~2 and ~3

evaluate (a,~,~) given

of Egs. (B-8) - (B-13) .



B-4

The results in Eqs. (B-8) , (B-12) and (~-13) apply to 3 CMGs.
For 2 CMGs certain modifications are needed in order to use
the above equations. These are tabulated in Table B-1.

TABLE B·' PARAMETER MODIFICATIONS FOR 2 CMG s

APPLICABLE
CMG PAIR B C {3 a

.h, &.h2 [-aJ z [~J x [aJz [~Jx 0 1

.h, &.h3 [-aJ z [~J x [aJz [~Jx 0 cos -'(H/2)

I.h2 &.h3 [~Jx [~Jx a

An analytical evaluation of 0 from Eqs. (B-2) and (B-7)­
(B-13) is not very rewarding except for a few special cases. Never­
theless this formulation is well suited for machine computation and
systematic scanning of the total gimbal angle space.



Appendix C

A Dynamic Origin Approach for 2 and 3 CMGs

The method outlined here is ba~ed on the geometry in
Fig. (C-la) which shows the relative orientation of h and a unit
vector ~k parallel to the outer gimbal axis of CMG k (k=1,2,3)*.

The dashed curve (C) represents the possible location of its
unit angular momentum vector h k for an angle d k between hand hk •

If., for instance, ~k is at point 1 on C, then

(C-l) ~k = j (2k-ll}
10 (2k)

= J k = 1,2,3

where 0p(2k) is the outer gimbal angle component of ~ for CMG k.

From the discussion of equilibrium loci in Section 4 it
is desirable to define a dynamic origin oN along a path which con-

nects the pole and anti-pole in allowable gimbal angle space. A
curve that satisfies this condition and simultaneously minimizes
the inner gimbal angle excursion is the great circle B in Fig. (C-la),
which is normal to meridian A containing e and h. The analytical
formulation for thj.s curve can be expresse~ in terms of Qk and Pk as

(C-2)

where

(C-3)

SO(2k_l) = -cPkcak

k=1,2,3
tan (0(2k)- 0P (2k) = -ll tan ak/sP k

={+l °P (2k) >0
1.I

-1 °p(2k) <0

(! -I

specifies the "useful half"of B,** hereafter called the normal tra­
jectory . (NT) . Typical trajectories are shown in Fig. (C-lb) • ***

*Here e k is defined along +z ,+x or +y if k=1,2, or 3
respectively. See Fig.(l). v v v

**This is the half circle of B not crossing the gimbal stops.

***The SUbscripts I and 0 are equivalent to (2k-l) and (2k) in
Eq. (C-2) •



- C-2 -

2 CMGs
-1Because of the requirement that a k=a:cos (H/2), the

NTs for 2 CMGs are not always compatible for arbitrary h. They
are compatible however if h lies in the plane formed by-the two
outer gimbal axes (i.e.(x -z ) for CMGs 1&2; (x z) for CMGsv, v v, v
2&3; (y x) for CMGs 3&1. If they are compatible, then definingv, v
the components of ~ according to Eq. (C-2) will result in a major

!E locus corresponding to the respective NTs, since P(~) in

Eq. (55) would be exactly zero along the NT. If they are not com­
patible, defining ~ according to Eq. (C-2) will result in a major

!E locus which minimizes the excursion from the NT. The!E locus

in Fig. (22) corresponding to !N~O is an example of this.

The major !E locus with ~ defined this way could be

computed from the procedure in Appendix B for 2 CMGs, if the
optimal ~ corresponding to minimizing p(~) in Eq. (55) were known.
A useful approximation for $opt given here without proof is

(C-4)

where ~Ni and ~Nj represent the (minimum) rotation of the respec­

tive NTs for CMGs i and j about h such that they are coplanar and
thus form a compatible trajectory. Expressions for tan ~Nk

(k=1,2,3) are given in Table (C-l).

TABLE C-1

TAN cf>Nk *

1**

2**

3

1&2 2&3 3&1

* J.I. =+1 (l)p(2k) >0) ; J.I. =-1 (l)p(2k) <0)

**ALGEBRAIC SIGNS OF NUMERATOR AND DENOMINATOR TERMS
SPECIFY THE QUADRANT FOR cf>Nk
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3 CMGs

Here we note that the NTs are always compatible for
3 CMGs so that the dynamic origin approach with ~ defined

according to Eq. (C-2) might also be applied in that case. The
compatibility can be observed after resolving the unit vectors
~k into components along h such that

(C-S) h k = cakh + sak!!nk

where

(C-6) !!nk
!V

- ~~k/sPk

Thus,
3 3 3

(C-7) ~t Hh = ~ cak~ +
!V

sak/sPk= L = L L ~~k
k=l k=l k=l

and since

(C-S)

it follows that

(t-9) o =
3
L

k=l

0 h 0 -h
Y z

(C-lO) 0 = Sal -h + Sa2 h + Sa3 0-- x -- z

0
sPl

0
sP2

-h
sP3

h
Y x

where Pl,P2' and P3 are defined by Eq. (50). Thus given hand H

Eqs. (C-S) and (C-lO) can be solved to find the corresponding CMG
distribution (aI' a 2 , a 3 ) about ~, although in general this is

not unique for H<l.

*See Footnote ** on p.C-l.



Appendix D

List of Symbols

This list defines major symbols appearing in two or more
sections. Minor symbols or symbols appearing in only one section
are omitted.

Greek
Symbols

•
,t

1
w

English

Symbols
D

Definition

angle between hi and h (l=1,2,3)

maximum a possible for a given H

Tvector (6xl) of symmetrical* gimbal angles, (0 1 ••• 0 6 )

di/dt

i at equilibrium (5=~)

vector (2xl) of symmetrical* gimbal angles for CMG l
(l=1,2,3)

vector (6xl) of symmetrical* gimbal angles defining
dynamic origin

o at CMG saturation (H=3 or H=2) for a given h

an inner gimbal angle component of 0 (1=1,3,5)
-p

an outer gimbal angle component of 0 (0=2,4,6)
-p

minimum angle between sunline and orbital plane
(see Footnote*, p.19)

vector (3xl) in CMG rotation law defined by -KRDTQ!

angle between ~l and h

rotation of total CMG momentum configuration about h

vector (3xl) of rotation angles (~12'~23'~3l) about

respective CMG pairs

d,t/dt

rotation of ~j and hk about their sum (hj+~k)

spacecraft angular velocity

matrix (6x3) with elements ~i~ (i,j=1,2,3~

Note: R.h.=O)
-1.-1. -

*relative to gimbal stops

y- (



English
Symbols

e.e.
Definitions

vector (3xl) parallel to outer. gimbal axis of CMG i:

CMGs

CMGs

unit vector (3xl) specifying the direction of h
t

scalar specifying the magnitude of h {O<H~3 3
-t o<H<2 2

. --
magnitudes corresponding to the sum of 2 CMG unit
momentum vectors

unit angular momentum vector (3xl) for CMG £. (£.=1,2,3)

vector (3xl) representing total CMG angular momentum
(normalized to spin angular momentum of one CMG.)

rotation law gain constant

angle (longitude) between the projection of h in
(xv,zv) plane and Xv
angle (latitude) between hand (xv,zv) plane

performance function of gimbal angles; quadratic

1 T
form: 2i Qi
rotation law weighting matrix (6x6); Q=diag (l,q,l,q,l,q)

matrix (2x3) transformation relating gimbal axes to
vehicle axes for CMGs 1,2 and 3

limit for elements of DT in rotation law

Skylab geometric coordinate axes

h

H

L

P <.~)

SL

(xv'Yv' zv)

Special
Symbals

c ( )

s ( )

t( )

T

point on gimbal ~ngle map corresponding to the

point on gimbal angle map corresponding to the
pole (i.e. the 0 for -h)-p

cos ( )

sin ( )

tan ( )

vector or matrix transpose operation

pole (2-p)

anti-

D-~
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